3.252 \(\int \frac {A+B x^2}{x^{3/2} \sqrt {b x^2+c x^4}} \, dx\)

Optimal. Leaf size=131 \[ \frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-A c) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{3 b^{5/4} \sqrt [4]{c} \sqrt {b x^2+c x^4}}-\frac {2 A \sqrt {b x^2+c x^4}}{3 b x^{5/2}} \]

[Out]

-2/3*A*(c*x^4+b*x^2)^(1/2)/b/x^(5/2)+1/3*(-A*c+3*B*b)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2
*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(
1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/b^(5/4)/c^(1/4)/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2038, 2032, 329, 220} \[ \frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-A c) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{3 b^{5/4} \sqrt [4]{c} \sqrt {b x^2+c x^4}}-\frac {2 A \sqrt {b x^2+c x^4}}{3 b x^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(x^(3/2)*Sqrt[b*x^2 + c*x^4]),x]

[Out]

(-2*A*Sqrt[b*x^2 + c*x^4])/(3*b*x^(5/2)) + ((3*b*B - A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] +
Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(3*b^(5/4)*c^(1/4)*Sqrt[b*x^2 + c*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 2038

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(c*e^(j - 1)*(e*x)^(m - j + 1)*(a*x^j + b*x^(j + n))^(p + 1))/(a*(m + j*p + 1)), x] + Dist[(a*d*(m + j*p + 1
) - b*c*(m + n + p*(j + n) + 1))/(a*e^n*(m + j*p + 1)), Int[(e*x)^(m + n)*(a*x^j + b*x^(j + n))^p, x], x] /; F
reeQ[{a, b, c, d, e, j, p}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && (LtQ[m
+ j*p, -1] || (IntegersQ[m - 1/2, p - 1/2] && LtQ[p, 0] && LtQ[m, -(n*p) - 1])) && (GtQ[e, 0] || IntegersQ[j,
n]) && NeQ[m + j*p + 1, 0] && NeQ[m - n + j*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {A+B x^2}{x^{3/2} \sqrt {b x^2+c x^4}} \, dx &=-\frac {2 A \sqrt {b x^2+c x^4}}{3 b x^{5/2}}-\frac {\left (2 \left (-\frac {3 b B}{2}+\frac {A c}{2}\right )\right ) \int \frac {\sqrt {x}}{\sqrt {b x^2+c x^4}} \, dx}{3 b}\\ &=-\frac {2 A \sqrt {b x^2+c x^4}}{3 b x^{5/2}}-\frac {\left (2 \left (-\frac {3 b B}{2}+\frac {A c}{2}\right ) x \sqrt {b+c x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x^2}} \, dx}{3 b \sqrt {b x^2+c x^4}}\\ &=-\frac {2 A \sqrt {b x^2+c x^4}}{3 b x^{5/2}}-\frac {\left (4 \left (-\frac {3 b B}{2}+\frac {A c}{2}\right ) x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{3 b \sqrt {b x^2+c x^4}}\\ &=-\frac {2 A \sqrt {b x^2+c x^4}}{3 b x^{5/2}}+\frac {(3 b B-A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{3 b^{5/4} \sqrt [4]{c} \sqrt {b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.07, size = 82, normalized size = 0.63 \[ -\frac {2 \left (x^2 \sqrt {\frac {c x^2}{b}+1} (A c-3 b B) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^2}{b}\right )+A \left (b+c x^2\right )\right )}{3 b \sqrt {x} \sqrt {x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(x^(3/2)*Sqrt[b*x^2 + c*x^4]),x]

[Out]

(-2*(A*(b + c*x^2) + (-3*b*B + A*c)*x^2*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^2)/b)]))/(
3*b*Sqrt[x]*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

fricas [F]  time = 0.92, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{4} + b x^{2}} {\left (B x^{2} + A\right )} \sqrt {x}}{c x^{6} + b x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^(3/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*(B*x^2 + A)*sqrt(x)/(c*x^6 + b*x^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B x^{2} + A}{\sqrt {c x^{4} + b x^{2}} x^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^(3/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)/(sqrt(c*x^4 + b*x^2)*x^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 219, normalized size = 1.67 \[ -\frac {2 A \,c^{2} x^{2}+\sqrt {-b c}\, \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, A c x \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {-b c}\, \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, B b x \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )+2 A b c}{3 \sqrt {c \,x^{4}+b \,x^{2}}\, b c \sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/x^(3/2)/(c*x^4+b*x^2)^(1/2),x)

[Out]

-1/3/(c*x^4+b*x^2)^(1/2)/x^(1/2)*(A*(-b*c)^(1/2)*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)
^(1/2))/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^(1/2)*c*x)^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*
2^(1/2))*x*c-3*B*(-b*c)^(1/2)*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2
))^(1/2)*(-1/(-b*c)^(1/2)*c*x)^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*x*b+2*A*c^
2*x^2+2*A*b*c)/c/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B x^{2} + A}{\sqrt {c x^{4} + b x^{2}} x^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^(3/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)/(sqrt(c*x^4 + b*x^2)*x^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {B\,x^2+A}{x^{3/2}\,\sqrt {c\,x^4+b\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^2)/(x^(3/2)*(b*x^2 + c*x^4)^(1/2)),x)

[Out]

int((A + B*x^2)/(x^(3/2)*(b*x^2 + c*x^4)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B x^{2}}{x^{\frac {3}{2}} \sqrt {x^{2} \left (b + c x^{2}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/x**(3/2)/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral((A + B*x**2)/(x**(3/2)*sqrt(x**2*(b + c*x**2))), x)

________________________________________________________________________________________